

2019 Water Quality Report Lake Hemet Municipal Water District

ESTE INFORME CONTIENE INFORMACIÓN MUY IMPORTANTE SOBRE SU AQUA PARA BEBER. FAVOR DE COMUNICARSE LAKE HEMET MWD PARA ASISTIRLO EN ESPAÑOL.

We test the drinking water for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1-December 31, 2019 and may include earlier data.

There are ten wells located along the San Jacinto River from Valle Vista to San Jacinto that supply most of your drinking water. In 2019, 1.8% of domestic production was purchased from Eastern Municipal Water District (EMWD). Complete 2008 drinking water source assessments for all ten wells and our 2017 Sanitary Survey are available upon request at our district office located at 26385 Fairview Ave. Hemet, CA 92544 (951-658-3241) or from the State Water Resources Control Board, Drinking Water Field Office, 1350 Front Street, Room 2050, San Diego, CA 92101 (619-525-4159). The 2008 assessments determined our sources are most vulnerable to sewer collection systems, septic systems, agricultural and/or irrigation wells, and high-density housing.

LHMWD invites public participation at our monthly board meeting held at 3:00 PM on the third Thursday of every month at the LHMWD district office, 26385 Fairview Ave. Hemet, 92544. For more information contact Kristen Frankforter, 951-658-3241 ext.245 or email kfrankforter@lhmwd.org.

Lake Hemet MWD treats all its ground water sources with chlorine disinfectant, either in liquid or tablet form. This is the only treatment added to the water we provide. There are 2 tie-ins to EMWD water, which also comes from local ground water sources and is treated similarly.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. LHMWD is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

In order to ensure that tap water is safe to drink, the USEPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California Law also establish limits for contaminants in bottles water that provide the same protection for public health. Additional information on bottled water is available on the California Department of Public Health website.

https://www.cdph.ca.gov/Programs/CEH/DFDCS/Pages/FDBPrograms/FoodSafetyProgram/Water.aspx

The Sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Contaminants that may be present in source water include: <u>Radioactive contaminants</u> that can be naturally-occurring or be the result of oil and gas production or mining activities; <u>Microbial contaminants</u>, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife; <u>Inorganic contaminants</u>, such as salts and metals, that can be naturally-occurring or result from urban storm-water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming; <u>Pesticides and herbicides</u> that may come from a variety of sources such as agriculture, urban storm-water runoff and residential uses; <u>Organic chemical contaminants</u>, including synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm-water runoff, agricultural applications, and septic systems.

Unregulated contaminant monitoring helps USEPA and the State Board to determine where certain contaminants occur and whether the contaminants need to be regulated.

Terms and Abbreviations used in this report

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Primary Drinking Water Standard (PDWS): MCLs, MRDLs and treatment techniques (TTs) for contaminants that affect health, along with their monitoring and reporting requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor or appearance of drinking water. Contaminants with SDWSs do not affect health at MCL levels.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRGLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

ND: Not detectable at testing limit NTU: Nephelometric Turbidity Unit: a measure of turbidity

Parts per Billion (ppb): micrograms per liter (μ g/L) is approximate to about one second in 32 years.

Parts per Million (ppm): milligrams per liter (mg/L) is approximate to about one second in 11.5 days,

Parts per Trillion (ppt): nanograms per liter (ng/L) is approximate to about three seconds in 100,000 years.

Parts per Quadrillion (ppq): pictograms per liter (pg/L) is approximate to 2.5 minutes in the total age of the earth or 2.5 billion years.

Picocuries per liter (pCi/L): a measure of radiation

Microsiemens per centimeter (μS/cm): a measure of conductivity

2019 Water Quality Report Lake Hemet Municipal Water District

The following tables list all the drinking water contaminants that were detected during the most recent sampling. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, although representative of the water quality, are more than one year old.

Results for water purchased from Eastern Municipal Water District (EMWD) are listed in braces {} in the tables below.

SAMPLING RESULTS FOR COLIFORM BACTERIA

Microbiological Contaminants	Sample Date	Highest No. of Detections	No. of months in violation	MCL	MCLG	Typical source of Bacteria
Total Coliform Bacteria (state Total Coliform Rule)		(in a month) Zero	· I Zero I · · · · I		0	Naturally present in the environment
Fecal Coliform or E.coli (state Total Coliform rule)		(in the year) Zero	Zero	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or E.coli positive		Human and animal fecal waste
E. coli (federal Revised Total Coliform Rule)	2019	(in the year) Zero	Zero	routine and repeat samples are total coliform –positive and either is <i>E.coli</i> -positive <i>or</i> system fails to take repeat samples following <i>E.coli</i> -positive routine sample <i>or</i> system fails to analyze total coliform-positive sample for E.coli	0	Human and animal fecal waste

SAMPLING RESULTS FOR LEAD AND COPPER

Lead and Copper	Sample Date	No. samples collected	90 th percentile level detected	N. sites exceeding AL	No. of schools requesting lead sampling	AL	PHG	Typical source of contaminant
Lead (ppb)	2019	31	ND	Zero	Zero*	15	0.2	Internal corrosion of household water plumbing systems; erosion of natural deposits
Copper (ppm)	2019	31	0.2	Zero	N/A	1.3	0.3	Internal corrosion of household water plumbing systems; erosion of natural deposits; leaching from wood preservatives

^{*}LHMWD and Hemet Unified School District tested drinking water fountains and food-prep sinks in all K-12 public schools in 2018 and there were no detectable levels of lead found.

2019 WATER QUALITY REPORT FOR VALLE VISTA/EAST HEMET

SAMPLING RESULTS FOR SODIUM AND HARDNESS

Chemical or Constituent	Sample Date	Level Detected {EMWD}	Range of Detections {EMWD}	MCL	PHG	Typical Source of Contaminant
Sodium (ppm)	2017-19	46 {44}	23-99 {29-99}	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm)	2017-19	161 {150}	49-206 {96-280}	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

DETECTION OF UNREGULATED CONTAMINANTS

Contaminant	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects
Hexavalent Chromium (ppb)	2017-19	ND	ND - 1.3	* (PHG = 0.02)	
Perfluorooctanoic Acid [PFOA] (ppt)**	2019	ND	ND-8.7	5.1	Exposures resulted in increased liver weight in laboratory animals
Perfluorohexanesulfonic acid [PFHxS] (ppt)**	2019	ND	ND - 3.5		
Perfluorobutanesulfonic acid [PFBS] (ppt)**	2019	ND	ND - 3.2		
Perfluoroheptanoic acid [PFHpA] (ppt)**	2019	ND	ND – 2.8		
Perfluorohexanoic Acid [PFHxA] (ppt)**	2019	ND	ND-3.9		
Total Organic Carbon [TOC] (ppm)	2018	0.38 {0.3}	ND – 1.2 {ND-0.6}		
Vanadium (ppb)	2017-19	15.6	3.2 – 74	50	Exposures resulted in developmental and reproductive effects in rats

^{*}There is currently no MCL for Hexavalent Chromium. The previous MCL of 10 ppb was withdrawn on Sept. 11, 2017.

DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD

Contaminant	Sample	Level Detected	Range of Detections	MCL	PHG	Typical Source of Contaminant
(reporting units)	Date	{EMWD}	{EMWD}	[MRDL]	[MRDLG]	
Arsenic (ppb)	2017-19	ND {ND}	ND - 7.6 {ND-4.2}	10	0.004	Erosion of natural deposits; orchard run-off
Barium (ppm)	2017-19	ND {ND}	ND - 0.18 {none}	1	2	Erosion of natural deposits
Fluoride (ppm)	2017-19	0.2 {0.3}	ND - 0.53 {0.2-0.4}	2	1	Erosion of natural deposits; discharge from fertilizer factories
Gross alpha particle activity (pCi/L)	2012-17 {2016-19}	4.4 {3.6}	ND - 8.4 {no range}	15	0	Erosion of natural deposits
Nitrate (as Nitrogen) (ppm)	2019	2.1 {1.2}	0.49-7.1 {ND-4.0}	10	10	Runoff/leaching from fertilizer use, septic tanks and sewage; erosion of natural deposits
Uranium (pCi/L)	2012-17	3.1 {1.4}	1 - 4.6 {ND-4.5}	20	0.43	Erosion of natural deposits
Chlorine (ppm)	2019	1.3	0.3-2.25	[4.0 as Cl2]	[4.0 as Cl2]	Drinking water disinfectant added for treatment
Trihalomethanes (ppb)	2019	4.0	ND-4.0	80		Byproduct of drinking water disinfection
1,2,3- Trichloropropane [TCP] (ppb)	2019	ND	ND-0.0057	0.005	0.0007	Leaching from hazardous waste sites; ingredient in nematicide used in this area in the 1950's

^{**}In 2019, LHMWD was ordered to monitor six wells for Per- and polyfluoroalkyl substances (PFAS). The level detected and range are based on the PFAS results at those six wells.

2019 Water Quality Report

Lake Hemet Municipal Water District

DETECTION OF CONTAMINANTS WITH SECONDARY DRINKING WATER STANDARDS

Contaminant	Date	Level detected {EMWD}	Range of Detections {EMWD}	MCL	Typical Source of Contaminant
Chloride (ppm)	2017-19	32 {31}	18.2-51 {9.3-97}	500	Runoff/leaching from natural deposits
Foaming agents (ppb)	2017-19	ND {70}	No Range (No Range)	500	Municipal and industrial waste discharges
Iron (ppb)	2017-19	ND {ND}	ND-255 {ND-230}	300	Leaching from natural deposits
Odor-Threshold – distribution (TON)	2019	1 {ND}	1-2 {ND-1}	3	Natural-occurring organic deposits
Specific Conductance (μS/cm)	2017-19	526 {470}	340-850 {280-940}	1600	Substances that form ions when in water
Sulfate (ppm)	2017-19	65 {68}	21-230 {9.3-220}	500	Runoff/leaching from natural deposits
Total Dissolved Solids [TDS] (ppm)	2017-19	319 {300}	200-510 {180-630}	1000	Runoff/leaching from natural deposits
Turbidity – distribution NTU)	2019	0.1	ND-0.9	5	Soil runoff
Turbidity-source water (NTU)	2017-19	0.1 (0.3)	ND-0.5 {0.1-1.1}	5	Soil runoff
Color (color units) – distribution	2019	ND	ND - 5	15	Naturally-occurring organic materials

While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

AKE HEMET MUNICIPAL WATER DISTRICT-GARNER VALLEY SYSTEM

Lake Hemet MWD- Garner Valley System

Lake Hemet MWD- Garner Valley

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2019 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse LHMWD a 951-658-3241 para asistirlo en español.

There are six wells located throughout Garner Valley that supply your drinking water. Drinking water source assessment (2012) and sanitary survey (2017) information is available on request from LHMWD (951-658-3241) or State Water

Resources Control Board Drinking Water Field Office, San Diego (619-525-4159). Assessments determined sources are most vulnerable to animal operations, low-density septic systems and historic waste/dump landfills.

LHMWD invites public participation at our

monthly board meeting held at 3:00 PM on the third Thursday of every month at the LHMWD district office, 26385 Fairview Avenue Hemet, CA 92544.

For more information contact Kristen Frankforter, 951-658-3241 ext. 245 or email kfrankforter@lhmwd.org.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water sources in several ways:

- Eliminate excessive use of lawn and garden fertilizers and pesticides—they contain hazardous chemicals that can reach your drinking water source.
- Pick up after your pets.
- If you have your own septic system, properly maintain your system to reduce leaching to water sources.
- Dispose of chemicals properly; take used motor oil to a recycling center.
- Volunteer in your community. Find a watershed or wellhead protection organization and volunteer to help. If there are no active
 groups, consider starting one. Use USEPA's Watershed Information Network to locate groups in your community or see How to
 Start a Watershed Team.

Contaminants that may be present in source water include:

Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals that are by-

products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural applications, and septic systems.

Radioactive contaminants that can be naturally-occurring or be the result of oil and gas production and mining activities.

26385 Fairview Ave. P.O. Box 5039 Hemet CA 92544 Phone: 951-658-3241 Fax: 951766-7031 E-mail: kfrankforter@lhmwd.org

In order to ensure that tap water is safe to drink,

THE USEPA AND THE STATE WATER
RESOURCES CONTROL BOARD (STATE
BOARD) PRESCRIBE REGULATIONS
THAT
LIMIT THE AMOUNT OF CERTAIN
CONTAMINANTS IN WATER PROVIDED
BY PUBLIC WATER SYSTEMS. THE U.S.
FOOD AND DRUG ADMINISTRATION
REGULATIONS AND CALIFORNIA LAW
ALSO ESTABLISH LIMITS FOR
CONTAMINANTS IN BOTTLED WATER
THAT PROVIDE THE SAME PROTECTION
FOR PUBLIC HEALTH. ADDITIONAL
INFORMATION ON BOTTLED WATER IS
AVAILABLE ON THE CALIFORNIA
DEPARTMENT OF PUBLIC HEALTH
WEBSITE:

https://www.cdph.ca.gov/Progra ms/CEH/DFDCS/Pages/FDBProgr ams/FoodSafetyProgram/Water. aspx

The following tables list all the drinking water contaminants that were detected

during the most recent sampling.
The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year

because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Terms used in this report

Maximum Contaminant Level (MCL): the highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHG (or MCLG) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the USEPA.

Public Health Goal (PHG): the level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfection Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health.

MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring, reporting, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Regulatory Action Level (AL): the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

ND: not detectable at testing limit **ppm**: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (μ g/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or pictograms per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

μS/cm: microsiemens per centimeter (a measure of conductivity)

NTU: Nephelometric Turbidity Unit: a measure of turbidity

USEPA'S
SAFE DRINKING WATER
HOTLINE
1-800-426-4791

Additional **General** Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline: 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity.

While your drinking water meets the federal and state standard for arsenic, it does contain levels of arsenic (see water quality tables). The arsenic standard balances the current understanding of arsenic's possible health effects against the cost of removing arsenic from drinking water. The US EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Sampling Results for Coliform Bacteria

Microbiological Contaminants	Sample Date	Highest No. of Detections	No. of months in violation	MCL	MCLG	Typical source of Bacteria
Total Coliform Bacteria (state Total Coliform Rule)		(in a month) Zero Zero		1 positive monthly sample	0	Naturally present in the environment
Fecal Coliform or E. coli (state Total Coliform Rule)	2019	(in the year) Zero	Zero	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive		Human and animal fecal waste
E. coli (federal Revised Total Coliform Rule)		(in the year) Zero	Zero	(a)	0	Human and animal fecal waste

⁽a) Routine and repeat samples are total coliform-positive and either is *E.coli*-positive or system fails to take repeat samples following *E.coli*-positive routine sample or system fails to analyze total coliform-positive sample for *E. coli*.

Sampling Results for Lead and Copper

Lead and Copper	Sample Date	No. of samples collected	90th percentile level detected	No. sites exceeding AL	AL	PHG	Typical source of contaminant
Lead (ppb)	2017	5	ND	Zero	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	2017	5	0.75	Zero	1.3	0.3	Internal corrosion of household water plumbing systems; erosion of natural deposits; leaching from wood preservatives

Sampling Results for Sodium and Hardness

Chemical or Constituent	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	2017-19	78	29-100	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm)	2017-19	70	8-170	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

Detection of Unregulated Contaminants

Chemical or Constituent (reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects
Vanadium (ppb)	2017-2019	1.2	ND-3.6	50	Exposures resulted in developmental and reproductive effects in rats.
Boron (ppm)	2017-2019	0.1	ND-0.18	1	Exposures resulted in decreased fetal weight (developmental effects) in newborn rats.

AKE HEMET MUNICIPAL WATER DISTRICT- GARNER VALLEY.

Detection of Contaminants with a Primary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG [MRDLG]	Typical Source of Contaminant
Arsenic (ppb)	2017-19	ND	ND-11*	10	0.004	Erosion of natural deposits; runoff from orchards;
Barium (ppm)	2017-19	ND	ND-0.13	1	2	Erosion of natural deposits
Copper (ppm)	2017-19	ND	ND-0.09	AL = 1.3	0.3	Runoff/leaching from natural deposits; leaching from wood preservatives
Fluoride (ppm)	2017-19	0.52	0.2-0.97	2	1	Erosion of natural deposits; discharge from fertilizer factories
Gross alpha particle activity (pCi/L)	2014-19	ND	ND-7.4	15	(0)	Erosion of natural deposits
Nitrate as Nitrogen (ppm)	2019	1.3	ND-6.6	10	10	Runoff /leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Uranium (pCi/L)	2011-16	2.0	ND-3.8	20	0.43	Erosion of natural deposits
Chlorine Residual (ppm)	2019	1.4	0.63-2.2	[4.0 as Cl ₂]	[4.0 as Cl ₂]	Drinking water disinfectant added for treatment
Total Trihalomethanes (TTHM) (ppb)	2019	21	21	80	_	Byproduct of drinking water disinfection
Haloacetic acids (HAA) (ppb)	2019	4.7	4.7	60	_	Byproduct of drinking water disinfection

^{*}During 2019, there were two samples at Well-1 that contained arsenic above the MCL. However, the running annual average at this well never exceeded the MCL. Therefore, the water served to our customers met all Federal and State drinking water standards.

Detection of Contaminants with a Secondary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	Typical Source of Contaminant
Chloride (ppm)	2017-19	25	22-30	500	Runoff/leaching from natural deposits; seawater influence
Color (distribution) (color units)	2019	0.4	ND-5	15	Naturally-occurring organic materials
Iron (ppb)	2017-19	ND	ND-700	300	Leaching from natural deposits; Industrial wastes
Odor—Threshold (distribution) (units)	2019	1.2	1-2	3	Naturally-occurring organic materials
Odor—Threshold (source) (units)	2017-19	1.5	1-5	3	Naturally-occurring organic materials
Specific Conductance (µS/cm)	2017-19	482	400-600	1600	Substances that form ions when in water
Sulfate (ppm)	2017-19	52	22-82	500	Runoff /leaching from natural deposits
Total Dissolved Solids (ppm)	2017-19	294	230-380	1000	Runoff /leaching from natural deposits
Turbidity (distribution) (NTU)	2019	0.16	ND-0.7	5	Soil runoff
Turbidity (source) (NTU)	2017-19	0.3	ND-8.7	5	Soil runoff

• If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Lake Hemet MWD is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at www.epa.gov/lead.

KE HEMET MUNICIPAL WATER DISTRICT CAMPGROUND SYSTEM 3310080

951-658-3241

Lake Hemet MWD Campground

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 -December 31, 2019 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse LHMWD a 951-658-3241 para asistirlo en español.

There is one well located in the pasture just east of Lake Hemet that supplies your drinking water. Drinking water source assessment (2012) and sanitary survey (2017) information are available on request from LHMWD- 26385 Fairview Ave Hemet, CA 92544 (951-658-3241) or State Water Resources Control Board

Drinking Water Field Office, 1350 Front Street room 2050 San Diego, CA 92101 (619-525-4159). The drinking water source assessment determined that the source water is most vulnerable to contamination by animal grazing in the area.

LHMWD invites public participation at our monthly board meeting held at 3:00 PM on the third Thursday of every month at the LHMWD district office, 26385 Fairview Avenue Hemet, CA 92544.

For more information contact Kristen Frankforter, 951-658-3241 ext. 245 or email kfrankforter@lhmwd.org.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

In order to ensure that tap water is safe to drink,

THE USEPA AND THE STATE WATER RESOURCES CONTROL BOARD (STATE BOARD) PRESCRIBE REGULATIONS THAT LIMIT THE AMOUNT OF CERTAIN CONTAMINANTS IN WATER PROVIDED BY PUBLIC WATER SYSTEMS. THE U.S. FOOD AND DRUG ADMINISTRATION REGULATIONS AND CALIFORNIA LAW ALSO ESTABLISH LIMITS FOR CONTAMINANTS IN BOTTLED WATER THAT PROVIDE THE SAME PROTECTION FOR PUBLIC HEALTH. ADDITIONAL INFORMATION ON BOTTLED WATER IS AVAILABLE ON THE CALIFORNIA DEPARTMENT OF PUBLIC HEALTH WEBSITE: https://www.cdph.ca.gov/Programs/ CEH/DFDCS/Pages/FDBPrograms/Fo odSafetyProgram/Water.aspx

The following tables list all the drinking water contaminants that were detected during the most recent sampling.

The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural applications

and septic systems.

Radioactive contaminants that can be naturally-occurring or be the result of oil and gas production and mining activities.

Contaminants that may be present in source water include:

Microbial contaminants,

such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. Inorganic contaminants,

such as salts and metals, that can be naturallyoccurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides that may come from a variety of sources such as

agriculture, urban stormwater runoff, and

Maximum Contaminant Level (MCL): the highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHG (or MCLG) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the USEPA.

Public Health Goal (PHG): the level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

2019 Water Quality Report

Terms used in this report

Maximum Residual Disinfection Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the

use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring an reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor or appearance of the drinking water. Contaminants with SDWSs do not affect health at the MCL levels. Regulatory Action Level (AL):the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter $(\mu g/L)$

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picograms per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

μS/cm: microsiemens per centimeter (a measure of conductivity)

NTU: Nephelometric Turbidity Unit: a measure of turbidity

USEPA'S SAFE DRINKING WATER HOTLINE 1-800-426-4791

Additional General Information on Drinking Water

follow.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline: 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Lake Hemet MWD is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components.

When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may want to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information of lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at www.epa.gov/lead.

Sampling Results for Coliform Bacteria

Microbiological Contaminants	Sample Date	Highest No. of Detections	No. of months in violation	MCL	MCLG	Typical source of Bacteria
Total Coliform Bacteria (state Total Coliform Rule)		(in a month) Zero	Zero	1 positive monthly sample		Naturally present in environment
Fecal Coliform or E. coli (state Total Coliform Rule)	2019	(in the year) Zero	Zero	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive		Human and animal fecal waste
E. coli (federal Revised Total Coliform Rule)		Zero	Zero	(a)	0	Human and animal fecal waste

⁽a) routine and repeat samples are total coliform-positive and either is *E.coli*-positive or system fails to take repeat samples following *E.coli*-positive routine sample or system fails to analyze total coliform-positive sample for *E. coli*.

Sampling Results for Lead and Copper

Lead and Copper	Sample Date	No. of samples collected	90th percentile level detected	No. sites exceeding AL	AL	PHG	Typical source of contaminant
Lead (ppb)	2018	5	ND	Zero	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	2018	5	ND	Zero	1.3	0.3	Internal corrosion of household water plumbing systems; erosion of natural deposits; leaching from wood preservatives

Detection of Unregulated Contaminants

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects
Vanadium (ppb)	2017	6.5	6.5	50	Exposures resulted in developmental and reproductive effects in rats.

Sampling Results for Sodium and Hardness

Chemical or constituent	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	2017	30	30	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm)	2017	120	120	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and is usually naturally occurring

Detection of Contaminants with a Primary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Barium (ppm)	2017	0.17	0.17	1	2	Discharges of oil drilling wastes; erosion of natural deposits
Chlorine (ppm)	2019	1.32	1.02-1.70	[4.0 as Cl ₂]	[4.0 as Cl ₂]	Drinking water disinfectant added for treatment
Fluoride (ppm)	2017	0.33	0.33	2	1	Erosion of natural deposits
Nitrate as Nitrogen (ppm)	2019	2.1	2.1	10	10	Run-off and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Total Trihalomethanes (TTHM) (ppb)	2019	2.5	2.5	80		Byproduct of drinking water disinfection

Detection of Contaminants with a **Secondary** Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Turbidity-distribution (NTU)	2019	ND	ND-0.2	5		Soil run-off
Odor-Threshold-distribution (units)	2019	1.1	ND-2	3		Naturally-occurring organic materials
Chloride (ppm)	2017	14	14	500		Runoff/leaching from natural deposits;
Sulfate (ppm)	2017	9.8	9.8	500		Runoff/leaching from natural deposits; industrial waste
Total Dissolved Solids (ppm)	2017	210	200-220	1000		Runoff/leaching from natural deposits
Specific Conductance (μS/cm)	2017	360	360	1600		Substances that form ions when in water; seawater influence

Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways:

- Eliminate excess use of fertilizers and pesticides—they contain hazardous chemicals that can reach your drinking water source.
- Pick up after your pets.
- Dispose of chemicals properly; take used motor oil to a recycling center.
- Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use USEPA's Adopt Your Watershed to locate groups in your community, or visit the Watershed Information Network's How to Start a Watershed Team.